

PRINT ISSN 2278-8697

MATHEMATICAL SCIENCES INTERNATIONAL RESEARCH JOURNAL

Biannual Referred Journal SE Impact Factor 2.73

VOLUME 9

ISSUE 1 (2020)

imrfjournals.in Biannual Journal Peer Referred Journal Open Access - Print & Online Editors Dr.Ratnakar D B Dr.M Lellis Thivagar Dr.P.Vijaya Vani

IMRF JOURNALS

REPRESENTATIONS OF SEMI LATTICE IN FACTOR CONGRUENCE ON PRE A*- ALGEBRA

V. Ramabrahmam

Lecturer in Mathematics, Sir CRR College, Eluru, A.P., India

I.V.Venkateswara Rao

Assistant Professor & Deputy HOD of Mathematics, PB Siddhartha College of Arts & Science , Vijayawada, A.P., India.

U.Suryakumar

Lecturer in Mathematics, ANR College, Gudiwada, A.P., India

A. Satyanarayana

Lecturer in Mathematics, ANR College, Gudiwada, A.P., India. Email: asnmat1969@yahoo.in

Received: Jan. 2020 Accepted: Feb. 2020 Published: Feb. 2020

Abstract: In this paper we define \otimes -Semi lattice on Pre A*-algebra A and prove that for each $a \in C(A)$ define $\beta_a = \{(x,y) \mid a \lor x = a \lor y\}$ is a factor congruence on A and $\beta_a \circ$ is direct complement of β_a and also prove that β is a factor congruence on A iff $\beta = \beta_x$, for some $x \in C(A)$.

Keywords: Pre A*-algebra, \otimes -Semi lattice, central element, factor congruence.

AMS subject classification (2000): 06E05, 06E25, 06E99, 06B10.

Introduction: In 1994, P. Koteswara Rao[2] first introduced the concept A*-Algebra $(A, \land, \lor, *, (-), (-), -)_{\pi}, 0, 1, 2)$ not only studied the equivalence with Ada, C-algebra, Ada's connection with 3-Ring, the If-Then-Else structure over A*-algebra and Ideal of A*-algebra. In 2000, J. Venkateswara Rao [5] introduced the concept of Pre A*-algebra $(A, \land, \lor, (-))$ as the variety generated by the 3-element algebra $A = \{0,1,2\}$ which is an algebraic form of three valued conditional logic. In [6] Satyanarayana et al. generated Semilattice structure on Pre A*-Algebras . In [7] Satyanarayana. A, et. all derive necessary and sufficient conditions for pre A*-algebra A to become a Boolean algebra in terms of the partial ordering.

- 1. Preliminaries: In this section we concentrate on the algebraic structure of Pre A*-algebra and state some results which will be used in the later text.
- 1.1. **Definition**: An algebra $(A, \land, \lor, (-)^{\sim})$ where A is a non-empty set with $1, \land, \lor$ are binary operations and $(-)^{\sim}$ is a unary operation satisfying
- (a) $x = x \quad \forall x \in A$
- (b) $x \wedge x = x$, $\forall x \in A$
- (c) $x \wedge y = y \wedge x$, $\forall x, y \in A$
- (d) $(x \wedge y)^- = x^- \vee y^- \quad \forall x, y \in A$
- (e) $x \wedge (y \wedge z) = (x \wedge y) \wedge z$, $\forall x, y, z \in A$
- (f) $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z), \quad \forall x, y, z \in A$
- (g) $x \wedge y = x \wedge (x^- \vee y)$, $\forall x, y \in A$ is called a Pre A*-algebra.

1.2. Example: $3 = \{0, 1, 2\}$ with operations $\land, \lor, (-)$ defined below is a Pre A*-algebra.

^	0	1	2	v	0	1	2	 x	<i>x</i> :
0	0	0	2	0	0	1	2	 0	
1						1		1	0
2	2	2	2	2	2	2	2	2	2

1.3. Note: The elements 0, 1, 2 in the above example satisfy the following laws:

(a) $2^{-} = 2$

(b) $1 \wedge x = x$ for all $x \in 3$

(c) $o \lor x = x$ for all $x \in 3$

(d) $2 \wedge x = 2 \vee x = 2$ for all $x \in 3$.

1.4. Example: $2 = \{0, 1\}$ with operations \land , \lor , (-) defined below is a Pre A*-algebra.

^	0	1	V	0	1	x	x
0	0	0	0	0	1	0	1
1	0	1	1	1	1	1	0

1.5. Note:

- (i) $(2, \vee, \wedge, (-))$ is a Boolean algebra. So every Boolean algebra is a Pre A* algebra.
- (ii) The identities 1.2(a) and 1.2(d) imply that the varieties of Pre A*-algebras satisfies all the dual statements of 1.2(b) to 1.2(g).
- 1.6. **Definition:** Let A be a Pre A*-algebra. An element $x \in A$ is called a central element of A if $x \lor x\%1$ and the set $\{x \in A \mid x \lor x\%1\}$ of all central elements of A is called the centre of A and it is denoted by B (A).
- 1.7. Theorem:[6] Let A be a Pre A*-algebra with 1, then B (A) is a Boolean algebra with the induced operations $\land, \lor, (-)$
- 1.8. Lemma: [6] Every Pre A*-algebra with 1 satisfies the following laws

(a)
$$x \lor 1 = x \lor x^{\sim}$$

(b)
$$x \wedge 0 = x \wedge x$$

1.9. Lemma: [6] Every Pre A*-algebra with 1 satisfies the following laws.

- (a) $x \land (x\% x) = x \lor (x\% x) = x$
- (b) $(x \lor x\% \land y = (x \land y) \lor (x\% \land y)$
- (c) $(x \lor y) \land z = (x \land z) \lor (x\%\land y \land z)$
- 1.10. **Definition**: A relation θ on a Pre A*- algebra $(A, \land, \lor, (-)\%)$ is called congruence relation if
- (i) heta is an equivalence relation
- (ii) θ is closed under $\wedge, \vee, (-)$ %
- 2. ⊗ -Semi Lattice on Pre A*- Algebra
- **2.1. Theorem:**[6] Let A b e a Pre A*-algebra $\langle A, \vee \rangle$ is a semilattice.

2.2. Definition: Let A be a Pre A*-algebra with 2. If \otimes is an unary operation on A such that for any x, y, $a \in A$ satisfying the following

(i)
$$a \vee a^{\otimes} = 2$$

(ii)
$$2^{\otimes} \vee x = x$$

(iii)
$$a \vee ((a \vee x)^{\otimes} \vee (a^{\otimes} \vee y)^{\otimes})^{\otimes} = a \vee x, \quad a^{\otimes} \vee ((a \vee x)^{\otimes} \vee (a^{\otimes} \vee y)^{\otimes})^{\otimes} = a^{\otimes} \vee y$$

(iv)
$$((a \lor x)^{\otimes} \lor (a^{\otimes} \lor x)^{\otimes})^{\otimes} = x$$

then A is called a \otimes -Semi lattice.

2.3. Lemma: $x^{\otimes \otimes} = x$, for all $x \in A$

Proof: By 2.2 Definition (iii) we have $a^{\otimes} \vee ((a \vee y)^{\otimes} \vee (a^{\otimes} \vee x)^{\otimes})^{\otimes} = a^{\otimes} \vee x$

Let
$$a = 2$$
 then $2^{\otimes} \vee ((2 \vee y)^{\otimes} \vee (2^{\otimes} \vee x)^{\otimes})^{\otimes} = 2^{\otimes} \vee x$
 $\Rightarrow ((2 \vee y)^{\otimes} \vee (2^{\otimes} \vee x)^{\otimes})^{\otimes} = x$ (by 2.2 Definition (ii))
 $\Rightarrow (2^{\otimes} \vee x^{\otimes})^{\otimes} = x$
 $\Rightarrow x^{\otimes \otimes} = x$

2.4. Definition: Let A be a \otimes -Semi lattice. An element $a \in A$ is called central element if a satisfies the following

(1)
$$a \lor x = a \lor y \implies a \lor x^{\otimes} = a \lor y^{\otimes}$$

(2)
$$a^{\otimes} \vee x = a^{\otimes} \vee y \implies a^{\otimes} \vee x^{\otimes} = a^{\otimes} \vee y^{\otimes}$$
, for all $x, y \in A$

The set of all central elements is denoted by C(A), and also observe that $a \in C(A)$ then $a^{\otimes} \in C(A)$

2.5. Lemma: Let A be a \otimes -Semi lattice and $a \in C(A)$ then define $\beta_a = \{(x,y) \mid a \lor x = a \lor y\}$ is a congruence on A

Proof: Since $a \lor x = a \lor x$ then $(x, x) \in \beta_a$, the relation is reflexive.

Let
$$(x, y) \in \beta_a$$
 then $a \lor x = a \lor y \implies a \lor y = a \lor x$

$$\Rightarrow$$
 $(y, x) \in \beta_a$, the relation is symmetric

Let
$$(x, y) \in \beta_a$$
 and $(y, z) \in \beta_a$ then $a \lor x = a \lor y$ and $a \lor y = a \lor z \Rightarrow a \lor x = a \lor z$

$$\Rightarrow (x,z) \in \beta_a$$
, the relation is transitive.

Hence the relation $oldsymbol{eta}_a$ is equivalence relation.

Let $x,y,z,t\in A$ such that $(x,y)\in\beta_a$ and $(z,t)\in\beta_a$ then $a\vee x=a\vee y$, $a\vee z=a\vee t$. Now $a\vee (x\vee z)=(a\vee x)\vee z$

$$=(a\vee x)\vee(a\vee z)=(a\vee y)\vee(a\vee t)=a\vee(y\vee t)$$

This shows that $(x \lor z, y \lor t) \in \beta_a$

Hence β_a is closed under \vee .

Let $x, y \in A$ such that $(x, y) \in \beta_a$ then $a \lor x = a \lor y \Rightarrow a\% x\% = a\% y\%$

$$\Rightarrow a \lor x^{\otimes} = a \lor y^{\otimes} \text{ (since } a \in C(A) \text{)}$$
$$\Rightarrow (x^{\otimes}, y^{\otimes}) \in \beta$$

Therefore β_a is closed under \otimes

Therefore β_a is a congruence relation on A.

2.6. Lemma: [6] Let A be a Pre A*-algebra define a relation \leq on A by $x \leq y$ iff $x \vee y = y$ then (A, \leq) is a poset.

2.7. **Definition:** Let A be a Pre A*-algebra and $\alpha \in \text{Con}(A)$. Then α is called factor congruence if there exist $\beta \in \text{Con}(A)$ such that $\alpha \ I \ \beta = \Delta_A$ and $\alpha \ o \ \beta = A \times A$. In this case β is called direct complement of α .

2.8. Lemma: Let A be a \otimes -Semi lattice and $a \in C(A)$ then β_a is a factor congruence on A and β_a is direct complement of β_a .

proof: Let $(x, y) \in \beta_a$ I $\beta_a \otimes$

 $\Rightarrow (x,y) \in \beta_a \text{ and } (x,y) \in \beta_a$

 $\Rightarrow a \lor x = a \lor y \text{ and } a^{\otimes} \lor x = a^{\otimes} \lor y$

Now $y = ((a \lor y)^{\otimes} \lor (a^{\otimes} \lor y)^{\otimes})^{\otimes}$ (by 2.2 Definition (iv))

 $= ((a \lor y)^{\otimes} \lor (a^{\otimes} \lor y)^{\otimes})^{\otimes} \lor y = ((a \lor x)^{\otimes} \lor (a^{\otimes} \lor x)^{\otimes})^{\otimes} \lor y = x \lor y$

Therefore $x \vee y = y$.

Hence $x \leq y$

Similarly we can prove that $y \le x$ and hence x = y.

Therefore β_a I $\beta_a = \Delta_A$

Let $x \neq y$ and $z = ((a \lor x)^{\otimes} \lor (a^{\otimes} \lor y)^{\otimes})^{\otimes}$

Now $a \lor z = a \lor ((a \lor x)^{\otimes} \lor (a^{\otimes} \lor y)^{\otimes})^{\otimes} = a \lor x \text{ (by 2.2 Definition (iii))}$

Therefore $(x, z) \in \beta_a$

Now $a^{\otimes} \vee z = a^{\otimes} \vee ((a \vee x)^{\otimes} \vee (a^{\otimes} \vee y)^{\otimes})^{\otimes} = a^{\otimes} \vee y$ (by 2.2 Definition (iii))

Therefore $(z, y) \in \beta_{a^{\varepsilon}}$

Thus $(x,y) \in \beta_{a^{\otimes}} \circ \beta_a$

Therefore $A \times A \subseteq \beta_a^{\circ}$ o β_a

Clearly $\beta_{a^{\otimes}}$ o $\beta_{a} \subseteq A \times A$

Hence β_a o $\beta_a = A \times A$

Therefore eta_a is a factor congruence on A and $eta_{a^{\otimes}}$ is direct complement of eta_a .

2.9. Lemma: Let A be a \otimes -Semi lattice and β is a congruence on A. Then β is a factor congruence on A iff $\beta = \beta_x$, for some $x \in C(A)$.

Proof: Suppose β is a factor congruence on A then there exists a θ such that β I $\theta = \Delta_A$ and β o $\theta = A \times A$.

 $N_{ow}(2,2^{\otimes}) \in \beta \circ \theta$ then there exists $x \in A$ such that $(2,x) \in \theta$, $(x,2^{\otimes}) \in \beta$

Now we show that $\beta = \beta_x$

Let $(p, q) \in \beta_x$ then $x \vee p = x \vee q$.

Since $(x, 2^{\otimes}) \in \beta$ we have $(x \vee p, 2^{\otimes} \vee p)$, $(x \vee q, 2^{\otimes} \vee q) \in \beta$ that is $(x \vee p, p)$, $(x \vee q, q) \in \beta$ which imply that $(p,q) \in \beta$.

Hence $\beta_x \subseteq \beta$.

Suppose $(p,q) \in \beta$ then $(x \vee p, x \vee q) \in \beta$.

Since $(2,x) \in \theta$ we have $(2 \lor p, x \lor p)$, $(2 \lor q, x \lor q) \in \theta$ that is $(2, x \lor p)$, $(2, x \lor q) \in \theta$ which implies that $(x \lor p, x \lor q) \in \theta$

Therefore $(x \lor p, x \lor q) \in \beta \mid \theta = \Delta_A$ and hence $x \lor p = x \lor q \implies (p, q) \in \beta_z$

Hence $\beta \subseteq \beta$,

Thus $\beta = \beta_r$.

Now we prove that $\theta = \beta_{0}$

Let $(p, q) \in \beta_3$ then $x^{\otimes} \lor p = x^{\otimes} \lor q$

Since $(2, x) \in \theta$ we have $(2^{\otimes}, x^{\otimes}) \in \theta \Rightarrow (2^{\otimes} \vee p, x^{\otimes} \vee p), (2^{\otimes} \vee q, x^{\otimes} \vee q) \in \theta$ $\Rightarrow (p, x^{\otimes} \vee p), (q, x^{\otimes} \vee q) \in \theta \Rightarrow (p, q) \in \theta$

Therefore $\beta_{3} \subseteq \theta$

Let $(p, q) \in \theta$

Since $(x, 2^{\otimes}) \in \beta$ we have $(x^{\otimes}, 2) \in \beta$

 $\Rightarrow (x^{\otimes} \vee p, 2 \vee p), (x^{\otimes} \vee q, 2 \vee q) \in \beta \Rightarrow (x^{\otimes} \vee p, 2), (x^{\otimes} \vee q, 2) \in \beta$

 $\Rightarrow (x^{\otimes} \vee p, x^{\otimes} \vee q) \in \beta$

Since $(p, q) \in \theta$ we have $(x^{\otimes} \vee p, x^{\otimes} \vee q) \in \theta$

Therefore $(x^{\otimes} \vee p, x^{\otimes} \vee q) \in \beta I \quad \theta = \Delta_A$

 $\Rightarrow x^{\otimes} \vee p = x^{\otimes} \vee q \Rightarrow (p, q) \in \beta_{x^{\otimes}} \Rightarrow \theta \subseteq \beta_{x^{\otimes}}$

Therefore $\theta = \beta_{s}$

Now we show that $x \in C(A)$.

Let $x \lor t = x \lor w$ that is $(t, w) \in \beta_x = \beta \Rightarrow (t^{\otimes}, w^{\otimes}) \in \beta$ (since β is a congruence)

 $\Rightarrow (t^{\otimes}, w^{\otimes}) \in \beta_{r} \Rightarrow x \vee t^{\otimes} = x \vee w^{\otimes}$

Let $x^{\otimes} \vee t = x^{\otimes} \vee w$

 \Rightarrow $(t, w) \in \beta_{x^3} = \theta \Rightarrow (t^{\otimes}, w^{\otimes}) \in \theta$ (since θ is a congruence)

 $\Rightarrow (t^{\otimes}, w^{\otimes}) \in \beta_{x^{\otimes}} \Rightarrow x^{\otimes} \vee t^{\otimes} = x^{\otimes} \vee w^{\otimes}$

Therefore $x \in C(A)$.

Conversely suppose that $\beta = \beta_x$, for some $x \in C(A)$.

By 2.8. Lemma β_x is a factor congruence.

References:

- Fernando Guzman and Craig C. Squir: The Algebra of Conditional logic, Algebra Universalis 27(1990), 88-110
- Koteswara Rao.P., A*-algebra and If-Then-Else structures (thesis) 1994, Nagarjuna University, A.P., India
- Manes E.G. The Equational Theory of Disjoint Alternatives, personal communication to Prof. N.V.Subrahmanyam(1989)
- Manes E.G. Ada and the Equational Theory of If-Then-Else, Algebra Universalis30(1993), 373-394
 Venkateswara Rao. J. On A*- algebras (thesis) 2000, Nagarjuna University, A.P., India
- Venkateswara Rao. J, Satyanarayana A, "Semilattice structure on Pre A*- Algebras", Asian Journal of Scientific Research, Vol. 3 (4), 2010 (pp 249-257).
- Satyanarayana.A, Venkateswara Rao.J, Surya Kumar.U, "Some structural compatibilities of Pre A*Algebra", African Journal of Mathematics and Computer Science Research.Vol.3 (4), April 2010 (pp.
 54-59).